Dataset Open Access
Over, Paul;
Bengoechea, Sergio;
Rung, Thomas;
Clerici, Francesco;
Scandurra, Leonardo;
De Villiers, Eugene;
Jaksch, Dieter
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-3" xsi:schemaLocation="http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd">
<identifier identifierType="DOI">10.25592/uhhfdm.14152</identifier>
<creators>
<creator>
<creatorName>Over, Paul</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-7436-5254</nameIdentifier>
<affiliation>Institute for Fluid Dynamics and Ship Theory, Hamburg University of Technology, 21073 Hamburg, Germany</affiliation>
</creator>
<creator>
<creatorName>Bengoechea, Sergio</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0009-0001-8205-5878</nameIdentifier>
<affiliation>Institute for Fluid Dynamics and Ship Theory, Hamburg University of Technology, 21073 Hamburg, Germany</affiliation>
</creator>
<creator>
<creatorName>Rung, Thomas</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3454-1804</nameIdentifier>
<affiliation>Institute for Fluid Dynamics and Ship Theory, Hamburg University of Technology, 21073 Hamburg, Germany</affiliation>
</creator>
<creator>
<creatorName>Clerici, Francesco</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0009-0002-8153-8111</nameIdentifier>
<affiliation>ENGYS Srl, Via del Follatoio, 12, 34148 Trieste TS, Italy</affiliation>
</creator>
<creator>
<creatorName>Scandurra, Leonardo</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3075-2919</nameIdentifier>
<affiliation>ENGYS Srl, Via del Follatoio, 12, 34148 Trieste TS, Italy</affiliation>
</creator>
<creator>
<creatorName>De Villiers, Eugene</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-0182-3637</nameIdentifier>
<affiliation>ENGYS UK, London SW18 3SX, United Kingdom</affiliation>
</creator>
<creator>
<creatorName>Jaksch, Dieter</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9704-3941</nameIdentifier>
<affiliation>Institute for Quantum Physics, University of Hamburg, 22761 Hamburg, Germany</affiliation>
</creator>
</creators>
<titles>
<title>Boundary Treatment for Variational Quantum Simulations of Partial Differential Equations on Quantum Computers</title>
</titles>
<publisher>Universität Hamburg</publisher>
<publicationYear>2024</publicationYear>
<subjects>
<subject>Computational Fluid Dynamics</subject>
<subject>Variational Quantum Algorithms</subject>
<subject>Quantum Computing</subject>
<subject>Boundary Conditions</subject>
</subjects>
<dates>
<date dateType="Issued">2024-02-28</date>
</dates>
<language>en</language>
<resourceType resourceTypeGeneral="Dataset"/>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://www.fdr.uni-hamburg.de/record/14152</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsReferencedBy">10.1016/j.compfluid.2024.106508</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsPartOf">10.25592/uhhfdm.14123</relatedIdentifier>
</relatedIdentifiers>
<rightsList>
<rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>The data refers to a variational quantum algorithm experiments solving initial-boundary value problems described by second-order partial differential equations. The approach uses hybrid classical/quantum hardware that is well suited for quantum computers of the current noisy intermediate-scale quantum era. The partial differential equation is initially translated into an optimal control problem with a modular control-to-state operator (ansatz). The examples include steady and unsteady diffusive transport equations for a scalar property in combination with various Dirichlet, Neumann, or Robin conditions. The results are complemented by classical finite difference results, which have been taken for comparison in the underlying document (<a href="https://doi.org/10.48550/arXiv.2402.18619">arXiv.2402.18619</a>).</p></description>
<description descriptionType="Other">The current work have received funding from the European Union's Horizon Europe research and innovation program (HORIZON-CL4-2021-DIGITAL-EMERGING-02-10) under grant agreement No. 101080085 QCFD.</description>
</descriptions>
</resource>