Dataset Open Access
Titvinidze, Irakli;
Stobbe, Julian;
Leusch, Marvin;
Rohringer, Georg
{"@context":"https://schema.org/","@id":"http://doi.org/10.25592/uhhfdm.17952","@type":"Dataset","creator":[{"@id":"https://orcid.org/0000-0002-9456-3570","@type":"Person","affiliation":"Universit\u00e4t Hamburg","name":"Titvinidze, Irakli"},{"@id":"https://orcid.org/0000-0002-5228-7993","@type":"Person","affiliation":"Universit\u00e4t Hamburg","name":"Stobbe, Julian"},{"@id":"https://orcid.org/0009-0001-1324-8692","@type":"Person","affiliation":"Universit\u00e4t Hamburg","name":"Leusch, Marvin"},{"@id":"https://orcid.org/0000-0002-4499-6693","@type":"Person","affiliation":"King's College London","name":"Rohringer, Georg"}],"datePublished":"2025-07-17","description":"<p>In this paper, we investigate the impact of nonlocal correlations on charge fluctuations in the<br>\ntwo-dimensional single-band Hubbard model close to the Mott metal-to-insulator transition, em-<br>\nploying the ladder dynamical vertex approximation. At half-filling and for interaction strengths and<br>\ntemperatures where the system is in the Mott insulating phase, charge fluctuations are strongly<br>\nsuppressed. Under these conditions, dynamical mean-field theory (DMFT) calculations predict a<br>\nstrong enhancement of the charge susceptibility at small (electron or hole) doping. However, these<br>\nDMFT results include only the effects of purely local correlations despite the importance of nonlo-<br>\ncal correlations in two-dimensional systems. We have, hence, carried out ladder dynamical vertex<br>\napproximation (lDΓA) simulations which allow for the inclusion of such nonlocal correlation effects<br>\nwhile retaining the local ones of DMFT. Our lDΓA numerical data show that close to half-filling<br>\nthe large uniform charge susceptibility of DMFT is strongly suppressed by nonlocal fluctuations but<br>\ngradually increases with (electron) doping. At a certain doping value, charge fluctuations eventually<br>\nbecome larger in lDΓA with respect to DMFT indicating that the absence of nonlocal correlations<br>\nunderestimates the mobility of the charge carriers in this parameter regime. This metallization effect<br>\nis also reflected in an enhancement of the lDΓA kinetic and potential energies and a corresponding<br>\nreduction of the (absolute value of the) lDΓA Matsubara self-energy with respect to DMFT.</p>","distribution":[{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/ED_out.zip","encodingFormat":"zip"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig01_Ypot_vs_Xpot_mu1.615.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig01_Ypot_vs_Xpot_mu1.73.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig01_Ypot_vs_Xpot_mu1.7.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig01_Ypot_vs_Xpot_mu1.8.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig02_results_0.txt","encodingFormat":"txt"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig02_results_1.txt","encodingFormat":"txt"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig03_Charge_Susceptibilitiy_DGAdm.txt","encodingFormat":"txt"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig03_Charge_Susceptibilitiy_DMFT1.txt","encodingFormat":"txt"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig03_Charge_Susceptibilitiy_DMFT2.txt","encodingFormat":"txt"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig04_Spin_Susceptibilitiy_DGAdm.txt","encodingFormat":"txt"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig04_Spin_Susceptibilitiy_DGAm.txt","encodingFormat":"txt"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig06_Susceptibility_Fit_Mod_Full.txt","encodingFormat":"txt"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig09_potential_energy.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Fig10_kinetic_energy.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs05_07_Susceptibility_mu1.615.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs05_07_Susceptibility_mu1.73.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs05_07_Susceptibility_mu1.7.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs05_07_Susceptibility_mu1.8.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs05_07_Susceptibility_mu2.0.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs05_07_Susceptibility_mu2.1.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs05_07_Susceptibility_mu2.3.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs05_07_Susceptibility_mu2.5.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs08_11_selfenergy_combined_mu1.615.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs08_11_selfenergy_combined_mu1.73.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs08_11_selfenergy_combined_mu1.7.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/Figs08_11_selfenergy_combined_mu1.8.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/how_to_jld2.txt","encodingFormat":"txt"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/lDGA_input_mu1.8.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/lDGA_mu1.8.jld2","encodingFormat":"jld2"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/dc22fd06-2782-4be8-971a-abfba5dfcdd4/readme.txt","encodingFormat":"txt"}],"identifier":"http://doi.org/10.25592/uhhfdm.17952","inLanguage":{"@type":"Language","alternateName":"eng","name":"English"},"license":"https://creativecommons.org/licenses/by/4.0/legalcode","name":"Suppression of the charge fluctuations by nonlocal correlations close to the Mott transition","url":"https://www.fdr.uni-hamburg.de/record/17952"}