Dataset Open Access
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-3" xsi:schemaLocation="http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd"> <identifier identifierType="DOI">10.25592/uhhfdm.9833</identifier> <creators> <creator> <creatorName>Maaß, Christina H.</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6264-6622</nameIdentifier> <affiliation>Universität Hamburg</affiliation> </creator> </creators> <titles> <title>Shedding light on dark figures: steps towards a methodology for estimating actual numbers of COVID-19 infections in Germany based on Google Trends</title> </titles> <publisher>Universität Hamburg</publisher> <publicationYear>2022</publicationYear> <subjects> <subject>Big Data, Google Trends</subject> </subjects> <dates> <date dateType="Issued">2022-01-20</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://www.fdr.uni-hamburg.de/record/9833</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsPartOf">10.25592/uhhfdm.9831</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Data used for research project: Shedding light on dark figures: Steps towards a methodology for estimating actual numbers of COVID-19 infections in Germany based on Google Trends</p> <p>Data obtained from Google Trends (trends.google.de) and Robert Koch Institute (https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/nCoV.html).</p></description> </descriptions> </resource>