Dataset Open Access
Pia Siegl;
Greta Sophie Reese;
Tomohiro Hashizume;
Nis-Luca van Hülst;
Dieter Jaksch
<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-3" xsi:schemaLocation="http://datacite.org/schema/kernel-3 http://schema.datacite.org/meta/kernel-3/metadata.xsd">
<identifier identifierType="DOI">10.25592/uhhfdm.18010</identifier>
<creators>
<creator>
<creatorName>Pia Siegl</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-2249-8121</nameIdentifier>
<affiliation>Institute of Software Methods for Product Virtualization, German Aerospace Center (DLR), Nöthnitzer Straße 46b, 01187 Dresden, Germany. Institute for Quantum Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.</affiliation>
</creator>
<creator>
<creatorName>Greta Sophie Reese</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0009-0001-9135-7499</nameIdentifier>
<affiliation>Institute for Quantum Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. Center for Optical Quantum Technologies, University of Hamburg, 22761 Hamburg, Germany . The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany</affiliation>
</creator>
<creator>
<creatorName>Tomohiro Hashizume</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7154-5417</nameIdentifier>
<affiliation>Institute for Quantum Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany</affiliation>
</creator>
<creator>
<creatorName>Nis-Luca van Hülst</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0009-0004-9893-3614</nameIdentifier>
<affiliation>Institute for Quantum Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany</affiliation>
</creator>
<creator>
<creatorName>Dieter Jaksch</creatorName>
<nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9704-3941</nameIdentifier>
<affiliation>Institute for Quantum Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany. Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK.</affiliation>
</creator>
</creators>
<titles>
<title>Dataset Tensor-Programmable Quantum Circuits for Solving Differential Equations</title>
</titles>
<publisher>Universität Hamburg</publisher>
<publicationYear>2025</publicationYear>
<subjects>
<subject>Computational Fluid Dynamics</subject>
<subject>Variational Quantum Algorithms</subject>
<subject>Non-Unitary Operators</subject>
<subject>Quantum Computing</subject>
</subjects>
<dates>
<date dateType="Issued">2025-10-06</date>
</dates>
<language>en</language>
<resourceType resourceTypeGeneral="Dataset"/>
<alternateIdentifiers>
<alternateIdentifier alternateIdentifierType="url">https://www.fdr.uni-hamburg.de/record/18010</alternateIdentifier>
</alternateIdentifiers>
<relatedIdentifiers>
<relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">https://arxiv.org/abs/2502.04425</relatedIdentifier>
<relatedIdentifier relatedIdentifierType="DOI" relationType="IsPartOf">10.25592/uhhfdm.16775</relatedIdentifier>
</relatedIdentifiers>
<version>2</version>
<rightsList>
<rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
<rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
</rightsList>
<descriptions>
<description descriptionType="Abstract"><p>We used a self-written Julia library to find unitary approximations of</p>
<p>matrix product operators (MPO). We implemented the variational quantum algorithms in python,</p>
<p>using pennylane, pyTorch and Jax.</p>
<p>&nbsp;</p>
<p>This dataset contains:&nbsp;</p>
<p>- Unitaries that represent the MPO operators</p>
<p>- Weights for all time steps parametrizing the solution of the linear Euler equation, the Burgers&rsquo;</p>
<p>&nbsp; equation and the Advection-Diffusion equation.</p>
<p>- Weights encoding the initial condition for the the Burgers&rsquo; equation and the Advection-Diffusion&nbsp;</p>
<p>&nbsp;&nbsp;&nbsp;equation.</p>
<p>- Data used for Fig.4, Fig.7 , Fig.8</p></description>
</descriptions>
</resource>