Dataset Open Access
Pia Siegl;
Greta Sophie Reese;
Tomohiro Hashizume;
Nis-Luca van Hülst;
Dieter Jaksch
{"@context":"https://schema.org/","@id":"http://doi.org/10.25592/uhhfdm.18010","@type":"Dataset","creator":[{"@id":"https://orcid.org/0000-0003-2249-8121","@type":"Person","affiliation":"Institute of Software Methods for Product Virtualization, German Aerospace Center (DLR), N\u00f6thnitzer Stra\u00dfe 46b, 01187 Dresden, Germany. Institute for Quantum Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.","name":"Pia Siegl"},{"@id":"https://orcid.org/0009-0001-9135-7499","@type":"Person","affiliation":"Institute for Quantum Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. Center for Optical Quantum Technologies, University of Hamburg, 22761 Hamburg, Germany . The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany","name":"Greta Sophie Reese"},{"@id":"https://orcid.org/0000-0002-7154-5417","@type":"Person","affiliation":"Institute for Quantum Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany","name":"Tomohiro Hashizume"},{"@id":"https://orcid.org/0009-0004-9893-3614","@type":"Person","affiliation":"Institute for Quantum Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany","name":"Nis-Luca van H\u00fclst"},{"@id":"https://orcid.org/0000-0002-9704-3941","@type":"Person","affiliation":"Institute for Quantum Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany. The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany. Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK.","name":"Dieter Jaksch"}],"datePublished":"2025-10-06","description":"<p>We used a self-written Julia library to find unitary approximations of</p>\n\n<p>matrix product operators (MPO). We implemented the variational quantum algorithms in python,</p>\n\n<p>using pennylane, pyTorch and Jax.</p>\n\n<p> </p>\n\n<p>This dataset contains: </p>\n\n<p>- Unitaries that represent the MPO operators</p>\n\n<p>- Weights for all time steps parametrizing the solution of the linear Euler equation, the Burgers’</p>\n\n<p> equation and the Advection-Diffusion equation.</p>\n\n<p>- Weights encoding the initial condition for the the Burgers’ equation and the Advection-Diffusion </p>\n\n<p> equation.</p>\n\n<p>- Data used for Fig.4, Fig.7 , Fig.8</p>","distribution":[{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/d464c384-fe81-45a4-b187-2a70b1b393c3/DataUpload.pdf","encodingFormat":"pdf"},{"@type":"DataDownload","contentUrl":"https://www.fdr.uni-hamburg.de/api/files/d464c384-fe81-45a4-b187-2a70b1b393c3/data.zip","encodingFormat":"zip"}],"identifier":"http://doi.org/10.25592/uhhfdm.18010","inLanguage":{"@type":"Language","alternateName":"eng","name":"English"},"keywords":["Computational Fluid Dynamics","Variational Quantum Algorithms","Non-Unitary Operators","Quantum Computing"],"license":"https://creativecommons.org/licenses/by/4.0/legalcode","name":"Dataset Tensor-Programmable Quantum Circuits for Solving Differential Equations","url":"https://www.fdr.uni-hamburg.de/record/18010","version":"2"}